Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Metab Brain Dis ; 21(4): 287-96, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17146735

RESUMO

Phenylketonuria (PKU) is the most frequent disturbance of amino acid metabolism being caused by severe deficiency of phenylalanine hydroxylase activity. Untreated PKU patients present severe mental retardation whose pathophysiology is not completely estabilished. Despite the low-Phe diet, a considerable number of phenylketonuric patients present a mild to moderate psychomotor delay and decreased cognitive functions. In the present study we evaluated various parameters of oxidative stress namely thiobarbituric acid-reactive species (TBA-RS), total antioxidant reactivity (TAR) and activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in two groups of treated PKU patients, one with well controlled and the other with high Phe blood levels in order to investigate whether blood Phe concentrations could be correlated with the extend of oxidative stress. We initially verified a marked increase of TBA-RS, and a decrease of TAR in plasma, as well as a reduction of erythrocyte GSH-Px activity which were similar in both groups of PKU patients, when compared to controls of similar ages. In contrast, CAT and SOD activities were not altered in PKU patients. These results show that oxidative stress occurs in PKU patients and that this pathogenic process is probably not directly correlated to Phe blood levels.


Assuntos
Estresse Oxidativo , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/metabolismo , Catalase/metabolismo , Criança , Eritrócitos/enzimologia , Radicais Livres/sangue , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos , Fenilalanina/sangue , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
Exp Neurol ; 197(1): 143-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16203000

RESUMO

We have previously demonstrated that octanoic (OA) and decanoic acids (DA) inhibit Na+, K+ ATPase activity in synaptic plasma membranes from rat brain. The objective of the present study was to investigate the in vitro effects of the other metabolites that accumulate in tissues of medium-chain acyl-CoA dehydrogenase (MCAD)-deficient patients, namely cis-4-decenoic acid (cDA), octanoylcarnitine (OC), hexanoylcarnitine (HC), hexanoylglycine (HG), phenylpropionylglycine (PPG) and suberoylglycine (SG), on Na+, K+ ATPase activity in synaptic plasma membrane from cerebral cortex of 30-day-old rats. cDA, the pathognomonic compound found in this disorder, provoked the strongest inhibition on this enzyme activity at concentrations as low as 0.25 mM, whereas OC inhibited this activity at 1.0 mM and higher concentrations in a dose-dependent manner. In contrast, HC, HG, PPG and SG did not affect Na+, K+ ATPase activity. Furthermore, pre-treatment of cortical homogenates with the antioxidant enzymes catalase plus superoxide dismutase totally prevented cDA-induced Na+, K+ ATPase inhibition. We also provided evidence that cDA, as well as OA and DA, caused lipid peroxidation, which may explain, at least in part, the inhibitory properties of these compounds towards Na+, K+ ATPase. Considering that Na+, K+ ATPase is a critical enzyme for normal brain development and functioning, it is presumed that these findings, especially those regarding to the marked inhibitory effect of cDA, may be involved in the pathophysiology of the neurological dysfunction of MCAD-deficient patients.


Assuntos
Córtex Cerebral/enzimologia , Inibidores Enzimáticos , Ácidos Graxos Monoinsaturados/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Membranas Sinápticas/enzimologia , Acil-CoA Desidrogenase/deficiência , Animais , Antioxidantes/farmacologia , Carnitina/análogos & derivados , Carnitina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Medições Luminescentes , Ratos , Ratos Wistar , Membranas Sinápticas/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Biochim Biophys Acta ; 1740(1): 68-73, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15878743

RESUMO

Phenylketonuria (PKU) is an autossomal recessive disease caused by phenylalanine-4-hydroxylase deficiency, which is a liver-specific enzyme that catalyzes the hydroxylation of l-phenylalanine (Phe) to l-tyrosine (Tyr). The deficiency of this enzyme leads to the accumulation of Phe in the tissues and plasma of patients. The clinical characterization of this disease is mental retardation and other neurological features. The mechanisms of brain damage are poorly understood. Oxidative stress is observed in some inborn errors of intermediary metabolism owing to the accumulation of toxic metabolites leading to excessive free radical production and may be a result of restricted diets on the antioxidant status. In the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid-reactive species (TBA-RS) and total antioxidant reactivity (TAR) in the plasma of PKU patients. The activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were also measured in erythrocytes from these patients. It was observed that phenylketonuric patients present a significant increase of plasma TBA-RS measurement, indicating a stimulation of lipoperoxidation, as well as a decrease of plasma TAR, reflecting a deficient capacity to rapidly handle an increase of reactive species. The results also showed a decrease of erythrocyte GSH-Px activity. Therefore, it is presumed that oxidative stress is involved in the pathophysiology of the tissue damage found in PKU.


Assuntos
Estresse Oxidativo , Fenilcetonúrias/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Enzimas/sangue , Eritrócitos/enzimologia , Humanos , Peroxidação de Lipídeos , Fenilalanina/sangue , Fenilcetonúrias/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/análise
4.
J Inherit Metab Dis ; 28(1): 57-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15702406

RESUMO

The pathophysiology of the striatum degeneration characteristic of patients affected by the inherited neurometabolic disorder glutaryl-CoA dehydrogenase deficiency (GDD), also known as glutaric aciduria type I, is still in debate. We have previously reported that 3-hydroxyglutaric acid (3-OH-GA) considered the main neurotoxin in this disorder, induces oxidative stress in rat cerebral cotex. In the present work, we extended these studies by investigating the in vitro effect of 3-OH-GA, at concentrations ranging from 0.01 to 1.0 mmol/L on the brain antioxidant defences by measuring total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) and glutathione (GSH) levels, and on the production of hydrogen peroxide (H(2)O(2)), nitric oxide (NO) and malondialdehyde in striatum homogenates from young rats. We observed that TRAP, TAR and GSH levels were markedly reduced (by up to 50%) when striatum homogenates were treated with 3-OH-GA. In contrast, H(2)O(2) (up to 44%), NO (up to 95%) and malondialdehyde levels (up to 28%) were significantly increased by 3-OH-GA. These data indicate that total nonenzymatic antioxidant defences (TRAP) and the tissue capacity to handle an increase of reactive species (TAR) were reduced by 3-OH-GA in the striatum. Furthermore, the results also reflect an increase of lipid peroxidation, probably secondary to 3-OH-GA-induced free radical production. Thus, it may be presumed that oxidative stress is involved in the neuropathology in GDD.


Assuntos
Corpo Estriado/metabolismo , Glutaratos/metabolismo , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Glutaril-CoA Desidrogenase , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Masculino , Malondialdeído/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
5.
J Inherit Metab Dis ; 27(4): 427-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15303000

RESUMO

Organic acidurias represent a group of inherited disorders resulting from deficient activity of specific enzymes of the catabolism of amino acids, carbohydrates or lipids, leading to tissue accumulation of one or more carboxylic (organic) acids. Patients affected by organic acidurias predominantly present neurological symptoms and structural brain abnormalities, of which the aetiopathogenesis is poorly understood. However, in recent years increasing evidence has emerged suggesting that oxidative stress is possibly involved in the pathology of some organic acidurias and other inborn errors of metabolism. This review addresses some of the recent developments obtained mainly from animal studies indicating oxidative damage as an important determinant of the neuropathophysiology of some organic acidurias. Recent data showing that various organic acids are capable of inducing free radical generation and decreasing brain antioxidant defences is presented. The discussion focuses on the relatively low antioxidant defences of the brain and the vulnerability of this tissue to reactive species. This offers new perspectives for potential therapeutic strategies for these disorders, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on removing toxic compounds and using special diets and pharmacological agents, such as cofactors and L-carnitine.


Assuntos
Ácidos Carboxílicos/urina , Erros Inatos do Metabolismo/urina , Doenças do Sistema Nervoso/etiologia , Estresse Oxidativo , Animais , Antioxidantes/uso terapêutico , Química Encefálica , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Radicais Livres , Doenças do Sistema Nervoso/prevenção & controle , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle
6.
Int J Dev Neurosci ; 22(2): 67-72, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15036381

RESUMO

Histidinemia is an inherited metabolic disorder caused by deficiency of histidase activity, which leads to tissue accumulation of histidine and its derivatives. Affected patients usually present with speech delay and mental retardation, although asymptomatic patients have been reported. Considering that the pathophysiology of the neurological dysfunction of histidinemia is not yet understood and since histidine has been considered a pro-oxidant agent, in the present study we investigated the effect of histidine and one of its derivatives, l-beta-imidazolelactic acid, at concentrations ranging from 0.1 to 10 mM, on various parameters of oxidative stress in cerebral cortex of 30-day-old Wistar rats. Chemiluminescence, total radical-trapping antioxidant potential (TRAP), thiobarbituric acid reactive substances (TBA-RS), and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were measured in tissue homogenates in the presence of l-histidine or l-beta-imidazolelactic acid. We observed that l-histidine provoked an increase of chemiluminescence and a reduction of TRAP at concentrations of 2.5 mM and higher, while TBA-RS measurement, GSH-Px, CAT and SOD activities were not affected. Furthermore, l-beta-imidazolelactic acid provoked antioxidant effects at high concentrations (5-10 mM) as observed by the reduction of chemiluminescence, although this compound enhanced chemiluminescence at low concentrations (0.5-1 mM). These results suggest that in vitro oxidative stress is elicited by histidine but only at supraphysiological concentrations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Córtex Cerebral/metabolismo , Histidina/metabolismo , Estresse Oxidativo/fisiologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Animais , Encefalopatias Metabólicas Congênitas/fisiopatologia , Catalase/efeitos dos fármacos , Catalase/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Radicais Livres/metabolismo , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Histidina/farmacologia , Imidazóis/farmacologia , Lactatos/farmacologia , Medições Luminescentes , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
7.
Neurochem Int ; 40(7): 593-601, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11900854

RESUMO

Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32-46%), complex I (61-72%), and complex II+III (15-26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1mM succinate in the assay instead of the usual 16mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11-27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Ácido Metilmalônico/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Metabolismo Energético , Mitocôndrias/enzimologia , Ratos , Ratos Wistar
8.
Brain Res ; 923(1-2): 50-7, 2001 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-11743972

RESUMO

Hyperargininemia is a metabolic disorder biochemically characterized by tissue accumulation of arginine and other guanidino compounds. Convulsions, lethargy and psychomotor delay or cognitive deterioration are predominant clinical features of this disease. Although neurologic symptoms predominate in this disorder, their pathophysiology is still unknown. In the present study we investigated the in vitro effects of arginine, N-acetylarginine, argininic acid and homoarginine on some oxidative stress parameters in rat brain in the hope to identify a possible mechanism for the brain damage in hyperargininemia. Chemiluminescence, total radical-trapping antioxidant potential (TRAP), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in the cerebral cortex of rats in the presence of various concentrations of these compounds. The results showed that all guanidino compounds tested significantly increased chemiluminescence and decreased TRAP at concentrations similar to those observed in the tissue of hyperargininemic patients. Furthermore, these compounds inhibited CAT and GSH-Px activities to varying extents, with GSH-Px activity being more susceptible to their action. In turn, argininic acid inhibited all enzyme activities, and its main action was also directed towards GSH-Px. The results suggest that oxidative stress caused by guanidino compounds may be involved in the brain dysfunction amongst other potential pathophysiological mechanisms observed in hyperargininemia.


Assuntos
Arginina/análogos & derivados , Arginina/farmacologia , Córtex Cerebral/metabolismo , Hiperargininemia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Homoarginina/farmacologia , Hiperargininemia/induzido quimicamente , Técnicas In Vitro , Medições Luminescentes , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
9.
Brain Res ; 920(1-2): 194-201, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11716825

RESUMO

Neurological dysfunction is common in patients with methylmalonic and propionic acidemias. However, the mechanisms underlying the neuropathology of these disorders are far from understood. In the present study we investigated the in vitro effects of methylmalonic (MMA) and propionic (PA) acids at various concentrations (1 microM-5 mM) on three parameters of the glutamatergic system, namely the basal and potassium-induced release of L-[3H]glutamate by synaptosomes, Na+-dependent L-[3H]glutamate uptake by synaptosomes and Na+-independent L-[3H]glutamate uptake by synaptic vesicles from cerebral cortex of male adult Wistar rats. The results showed that MMA significantly increased potassium-induced but not basal L-[3H]glutamate release from synaptosomes with no alteration in synaptosomal L-[3H]glutamate uptake. A significant reduction of L-[3H]glutamate incorporation into vesicles caused by MMA was also detected. In contrast, PA had no effect on these parameters. These findings indicate that MMA alters the glutamatergic system. Although additional studies are necessary to evaluate the importance of these observations for the neuropathology of methylmalonic acidemia, it is possible that the effects elicited by MMA may lead to excessive glutamate concentrations at the synaptic cleft, a fact that may explain previous in vivo and in vitro findings associating MMA with excitotoxicity.


Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Ácido Metilmalônico/farmacologia , Propionatos/farmacologia , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , L-Lactato Desidrogenase/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Potássio/farmacologia , Ratos , Ratos Wistar , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/enzimologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/enzimologia
10.
Exp Neurol ; 172(1): 250-4, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11681858

RESUMO

The exact mechanisms by which 3-nitropropionic acid (3-NP), a naturally occurring plant and fungal neurotoxin, exerts its neurotoxic effects are not fully understood. However, blockage of ATP synthesis by the irreversible inhibition of succinate dehydrogenase activity, increased production of free radicals, and secondary excitotoxicity have been implicated in its actions. In the present study, synaptic vesicle preparations from brain of adult rats were incubated with 3-NP at final concentrations ranging from 0.01 to 10 mM for the determination of glutamate uptake. The effect of 3-NP on gamma-aminobutyric acid (GABA) and glycine uptake was also studied. Glutamate incorporation into vesicles was inhibited by 3-NP in a dose-dependent manner, whereas doses of up to 10 mM neurotoxin did not affect GABA or glycine uptake. Moreover, 3-NP did not inhibit the ATPase activity of synaptic vesicles. These findings indicate that low concentrations of 3-NP are able to selectively prevent vesicular glutamate storage, and this may represent at least one of the mechanisms responsible for the neurotoxic effects of 3-NP.


Assuntos
Química Encefálica , Ácido Glutâmico/farmacocinética , Propionatos/farmacologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glicina/farmacocinética , Masculino , Neurotoxinas/farmacologia , Nitrocompostos , Ratos , Ratos Wistar , Vesículas Sinápticas/química , Ácido gama-Aminobutírico/farmacocinética
11.
Neurochem Res ; 26(5): 515-20, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11513478

RESUMO

In the present study we investigated the effect of acute administration of L-arginine on Na(+),K(+)-ATPase and Mg(2+)-ATPase activities and on some parameters of oxidative stress (chemiluminescence and total radical-trapping antioxidant parameter-TRAP) in midbrain of adult rats. We also tested the effect of L-NAME on the effects produced by arginine. Sixty-day-old rats were treated with an acute intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na(+),K(+)-ATPase activity was significantly reduced in the arginine-treated rats, but was not affected by other treatments. In contrast, Mg(2+)-ATPase activity was not altered by any treatment. Furthermore, chemiluminescence was significantly increased and TRAP was significantly decreased in arginine-treated rats, whereas the simultaneous injection of L-NAME prevented these effects. These results demonstrate that in vivo arginine administration reduces Na(+),K(+)-ATPase activity possibly through free radical generation induced by NO formation.


Assuntos
Arginina/farmacologia , Inibidores Enzimáticos/farmacologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/enzimologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
12.
Pediatr Res ; 50(1): 56-60, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11420419

RESUMO

Na(+), K(+)-ATPase activity was determined in erythrocyte membranes from 12 phenylketonuric patients of both sexes, aged 8.8 +/- 5.0 y, with plasma phenylalanine levels of 0.64 +/- 0.31 mM. The in vitro effects of phenylalanine and alanine on the enzyme activity in erythrocyte membranes from healthy individuals were also investigated. We observed that Na(+), K(+)-ATPase activity was decreased by 31% in erythrocytes from phenylketonuric patients compared with normal age-matched individuals (p < 0.01). We also observed a significant negative correlation between erythrocyte Na(+), K(+)-ATPase activity and plasma phenylalanine levels (r = -0.65; p < 0.05). All PKU patients with plasma phenylalanine levels higher than 0.3 mM had erythrocyte Na(+), K(+)-ATPase activity below the normal range. Phenylalanine inhibited in vitro erythrocyte Na(+), K(+)-ATPase activity by 22 to 34%, whereas alanine had no effect on this activity. However, when combined with phenylalanine, alanine prevented Na(+) K(+)-ATPase inhibition. Considering that reduction of Na(+), K(+)-ATPase activity occurs in various neurodegenerative disorders leading to neuronal loss, our previous observations showing a significant reduction of Na(+), K(+)-ATPase activity in brain cortex of rats subjected to experimental phenylketonuria and the present results, it is proposed that determination of Na(+), K(+)-ATPase activity in erythrocytes may be a useful peripheral marker for the neurotoxic effect of phenylalanine in phenylketonuria.


Assuntos
Membrana Eritrocítica/enzimologia , Fenilcetonúrias/sangue , Fenilcetonúrias/enzimologia , ATPase Trocadora de Sódio-Potássio/sangue , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino
13.
Braz. j. med. biol. res ; 34(5): 627-631, May 2001. ilus
Artigo em Inglês | LILACS | ID: lil-285878

RESUMO

2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70 percent) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45 percent) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated


Assuntos
Animais , Ratos , Dióxido de Carbono/metabolismo , Córtex Cerebral/efeitos dos fármacos , Metabolismo Energético , Hidroxibutiratos/farmacologia , Lipídeos/síntese química , Análise de Variância , Hidroxibutiratos/química , Mitocôndrias/metabolismo , Ratos Wistar
14.
Braz J Med Biol Res ; 34(5): 627-31, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11323749

RESUMO

2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.


Assuntos
Dióxido de Carbono/metabolismo , Córtex Cerebral/efeitos dos fármacos , Metabolismo Energético , Hidroxibutiratos/farmacologia , Lipídeos/síntese química , Análise de Variância , Animais , Hidroxibutiratos/química , Mitocôndrias/metabolismo , Ratos , Ratos Wistar
15.
Neurochem Int ; 38(6): 529-37, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11248401

RESUMO

Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of this disorder are poorly known. In the present study we investigated the effect of acute hyperleucinemia on plasma and brain concentrations of amino acids. Fifteen-day-old rats were injected subcutaneously with 6 micromol L-leucine per gram body weight. Controls received saline in the same volumes. The animals were sacrificed 30--120 min after injection, blood was collected and their brain rapidly removed and homogenized. The amino acid concentrations were determined by HPLC using orthophtaldialdehyde for derivatization and fluorescence for detection. The results showed significant reductions of the large neutral amino acids (LNAA) L-phenylalanine, L-tyrosine, L-isoleucine, L-valine and L-methionine, as well as L-alanine, L-serine and L-histidine in plasma and of L-phenylalanine, L-isoleucine, L-valine and L-methionine in brain, as compared to controls. In vitro experiments using brain slices to study the influence of leucine on amino acid transport and protein synthesis were also carried out. L-Leucine strongly inhibited [14C]-L-phenylalanine transport into brain, as well as the incorporation of the [14C]-amino acid mixture, [14C]-L-phenylalanine and [14C]-L-lysine into the brain proteins. Although additional studies are necessary to evaluate the importance of these effects for MSUD, considering previous findings of reduced levels of LNAA in plasma and CSF of MSUD patients during crises, it may be speculated that a decrease of essential amino acids in brain may lead to reduction of protein and neurotransmiter synthesis in this disorder.


Assuntos
Aminoácidos/metabolismo , Leucina/sangue , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos/sangue , Animais , Glicemia/análise , Cromatografia Líquida de Alta Pressão , Feminino , Insulina/sangue , Masculino , Doença da Urina de Xarope de Bordo/sangue , Ratos , Ratos Wistar
16.
Braz J Med Biol Res ; 34(2): 227-31, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11175498

RESUMO

Levels of methylmalonic acid (MMA) comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l) and brain (1.35 umol/g) of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 umol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum") was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA)) in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children.


Assuntos
Química Encefálica , Gangliosídeos/metabolismo , Metabolismo dos Lipídeos , Ácido Metilmalônico/administração & dosagem , Bainha de Mielina/efeitos dos fármacos , Ácidos Siálicos/metabolismo , Animais , Animais Recém-Nascidos , Colesterol/metabolismo , Feminino , Ácido Metilmalônico/farmacologia , Fosfolipídeos/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
17.
Braz. j. med. biol. res ; 34(2): 227-231, Feb. 2001.
Artigo em Inglês | LILACS | ID: lil-281600

RESUMO

Levels of methylmalonic acid (MMA) comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l) and brain (1.35 æmol/g) of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 æmol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum") was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA)) in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children


Assuntos
Encéfalo , Lipídeos , Ácido Metilmalônico/administração & dosagem , Proteínas da Mielina , Bainha de Mielina , Ácido N-Acetilneuramínico , Animais Recém-Nascidos , Colesterol , Gangliosídeos , Ácido Metilmalônico/farmacologia , Fosfolipídeos/análise , Ratos Wistar , Triglicerídeos/sangue
18.
Neurochem Res ; 26(12): 1277-83, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11885778

RESUMO

In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and gamma-glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5-3.0 mM and cytochrome c oxidase activity by 22-30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.


Assuntos
Animais Recém-Nascidos/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Metabolismo Energético/efeitos dos fármacos , Lipídeos/antagonistas & inibidores , Ácido Pirrolidonocarboxílico/farmacologia , Animais , Técnicas In Vitro , Lipídeos/biossíntese , Ratos , Ratos Wistar
19.
J Neurol Sci ; 181(1-2): 44-9, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11099711

RESUMO

Maple syrup urine disease is an inherited metabolic disorder characterized by tissue accumulation of branched-chain amino acids and their corresponding keto acids in the affected children. Although this disorder is predominantly characterized by neurological symptoms, only few studies were carried out to investigate its neuropathology. In this study we investigated the effect of the metabolites accumulating in maple syrup urine disease on the in vitro uptake of [3H]glutamate by synaptic vesicles of rat brain. Synaptic vesicle preparations from whole brain of male adult Wistar rats (200-250 g) were incubated with the branched-chain amino acids and their corresponding keto acids at final concentrations ranging from 0.25 to 10 mM for the determination of glutamate uptake. Glutamate uptake was significantly inhibited by L-leucine, L-isoleucine, L-2-ketoisocaproic acid and L-2-keto-3-methylvaleric acid by approximately 60%, whereas L-valine and L-2-ketoisovaleric acid showed no effect. We also verified that the metabolites probably act by competitive inhibition. Therefore, it is possible that extracellular glutamate levels may be increased in maple syrup urine disease and that excitotoxicity may be involved in the neuropathology of this disorder.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Neurônios/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Hemiterpenos , Isoleucina/metabolismo , Isoleucina/farmacologia , Cetoácidos/metabolismo , Cetoácidos/farmacologia , Leucina/metabolismo , Leucina/farmacologia , Masculino , Doença da Urina de Xarope de Bordo/complicações , Doença da Urina de Xarope de Bordo/fisiopatologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Vesículas Sinápticas/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Valina/metabolismo , Valina/farmacologia
20.
Metab Brain Dis ; 15(2): 105-14, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11092577

RESUMO

Na+, K+-ATPase activity was measured in synaptic plasma membrane from cerebral cortex of Wistar rats subjected to experimental phenylketonuria, i.e., chemical hyperphenylalaninemia induced by subcutaneous administration of 5.2 micromol phenylalanine / g body weight (twice a day) plus 0.9 micromol p-chlorophenylalanine / g body weight (once a day). The treatment was performed from the 6th to the 14th postpartum day and rats were killed 12 h after the last injection. Synaptic plasma membrane from cerebral cortex was prepared by a discontinuous density sucrose gradient for Na+, K+-ATPase activity determination. The results showed that the enzyme activity was decreased by 30% in animals subjected to experimental phenylketonuria when compared to control. The in vitro effects of the drugs on Na+, K+-ATPase activity were also investigated. Phenylalanine and p-chlorophenylalanine inhibited the enzyme activity and this inhibition was reversed by alanine. In addition, competition between phenylalanine and p-chlorophenylalanine for binding to the enzyme was observed, suggesting a common binding site for these substances. Our results suggest that reduction of Na+, K+-ATPase activity may be one of the mechanisms related to the brain dysfunction observed in human PKU.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Fenclonina/farmacologia , Neurônios/efeitos dos fármacos , Fenilalanina/farmacologia , Fenilcetonúrias/enzimologia , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Membranas Sinápticas/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , ATPase de Ca(2+) e Mg(2+)/efeitos dos fármacos , ATPase de Ca(2+) e Mg(2+)/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Farmacocinética , Fenilcetonúrias/fisiopatologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Membranas Sinápticas/enzimologia , Membranas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...